基本信息:
张通,汉族,山东省章丘市人,副教授,博士,硕士生导师,中共党员。河南理工大学数信学院信息与计算科学系教师,河南省青年骨干教师,河南理工大学二级“太行学者”。2004年毕业于鲁东大学数学系,获理学学士学位;2007年毕业于云南大学数学系,获理学硕士学位;2010年毕业于西安交通大学理学院,获理学博士学位。
办公地点:数信学院501,E-mail:tzhang@hpu.edu.cn。
教学工作:
本科生课程:计算方法,matlab程序设计与应用,高等数学,matlab软件与数学实验
研究生课程:偏微分方程数值解,有限元方法及其应用
科研工作:
科研项目:
国家自然科学基金天元项目,11126117,Navier-Stokes方程稳定化有限元方法后验误差估计,2012.01-2012.12,主持;
国家自然科学基金青年项目,11301157,不可压缩流体问题自适应有限体积算法研究,2014.01-2016.12,主持;
巴西教育部海外优秀青年项目,88881.068004/2014.01,不可压缩流体问题高效解耦算法研究,2015.01-2018.1,主持;
河南省高校青年骨干教师项目,2016GGJS-045,不可压缩粘性流体问题高效投影算法研究,2017.1-2019.12, 主持;
河南理工大学杰出青年科学基金项目,J2015-05,基于重构算法的后验误差估计理论和自适应算法研究,2016.01-2020.12, 主持。
部分论文:
[1]Liang Hongxia, Zhang Tong*, Parallel two-grid finite element method for the time-dependent natural convection problem with non-smooth initial data, Computers and Mathematics with Applications, 77 (2019) 2221–2241.
[2]Jin Jiaojiao, Zhang Tong, Li Jian, H2 stability of the first order Galerkin method for the Boussinesq equations with smooth and nonsmooth initial data, Computers and Mathematics with Applications, 75(1) 2018, 248-288.
[3]Zhang Tong, Liang Hongxia, Decoupled stabilized finite element methods for the Boussinesq equations with temperature-dependent coefficients International Communications in heat and Mass transfer, 110 (2017) 151-165.
[4] Zhang Tong, Feng Xinlong, Yuan Jinyun, Implicit explicit schemes of finite element method for the nonstationary thermal convection problems with temperature-dependent coefficients, International Communications in heat and Mass transfer, 76 (2016) 325-336.
[5] Zhang Tong, Yuan Jinyun, Si Zhiyong, Decoupled two grid finite element method for the time-dependent natural convection problem I spatial discretization, Numerical method for partial Differential equations, 31 (2015) 2135-2168.
[6] Zhang Tong, Pedro Damazio, Yuan Jinyun, A large time stepping viscosity-splitting finite element method for the viscoelastic flow problem, Advance in Computational Mathematics, 41 (2015) 149-190.
[7] Zhang Tong, Yuan Jinyun, Two novel decoupling algorithms for the steady Stokes-Darcy model based on two grid discretization, DCDS-B 19 (2014) 849-865
[8] Zhang Tong, Two grid characteristic finite volume methods for nonlinear parabolic problems, Journal of Computational Mathematics, 31 (2013) 470-487.
[9] Zhang Tong, He Yinnian, Fully discrete finite element method based on pressure stabilization for the transient Stokes equations, Mathematics and Computer in Simulation, 82 (2012) 1496-1515.
[10] Zhang Tong, Zhong He, Zhao Jing, A full discrete two grid finite volume method for a nonlinear parabolic problem, International Journal of Computer Mathematics, 88 (2011) 1644-1663.
[11] Zhang Tong, Si Zhiyong, He Yinnian, A stabilized characteristic finite element method for transient Navier-Stokes equations, International Journal of Computational Fluid Dynamics, 24 (2010) 369-381.