学校主页
正文 | Quick Navigation
通知公告
当前位置: 网站首页 >> 正文

中国科学院张平研究员网络学术报告

发布人:    发布时间:2021-03-26    【打印此页】
 
        报 告 人:张平  研究员   中国科学院 
        腾讯会议ID:666 511 840 
        
        报告时间:  2021-3-26(周五)   15:00-16:00
        报 告 题目(一):Global existence and decay of solutions to Prandtl system with small analytic and Gevrey data
        摘要:In this paper, we prove the global existence and the large time decay estimate  of solutions to  Prandtl system with small initial data, which is analytical  in the tangential variable. The key ingredient used in the proof  is to derive sufficiently fast decay-in-time estimate of some weighted analytic energy estimate to a quantity, which consists of a linear combination of the tangential velocity  with its primitive one, and which basically controls the evolution of the analytical radius to the solutions.  Our result can be viewed  as a global-in-time Cauchy-Kowalevsakya result for  Prandtl system with small analytical data, which in particular improves the previous result in \cite{IV16} concerning the almost global well-posedness of two-dimensional Prandtl system. Finally I'll present our recent result concerning the global wellposedness with small Gevrey data. This is a partially joint work with N. Liu; M. Paicu;  C. Wang and Y. Wang.
        
        报告时间:2021-3-27(周六)   9:00-10:00   
        报 告 题目(二):Global well-posedness of 3-D anisotropic Navier-Stokes system with large vertical viscous coefficient
        摘要:In this paper, we first prove the global well-posedness of 3-D anisotropic Navier-Stokes system
provided that the vertical viscous coefficient of the system is sufficiently large compared to some critical norm of the initial data. Then we shall construct a family of initial data, u0,ν, which vary fast enough in the vertical variable and which can be arbitrarily large in the space $BMO^{-1}$. Yet $u_{0,\nu}$ still generates a unique global solution to the classical 3-D Navier-Stokes system provided that $\nu$ is sufficiently large. 
        
        报告人简介:张平,现任中科院数学与系统科学研究院研究员,数学研究所所长。曾2005年获国家杰出青年科学基金;2007年获第十届中国青年科技奖; 2011年获国家自然科学二等奖;2019年获中国数学会陈省身奖等奖项。自1997年以来,共在Comm. Pure Appl. Math.,Ann. Sci. École Norm. Sup. , Arch. Ration. Mech. Anal., Comm. Math. Phys.,Adv. Math., J. Reine Angew. Math.等杂志发表文章100余篇,在美国数学会出版专著一本。主要研究领域为粘性不可压缩流体力学方程组与非线性Schraedinger方程的半经典极限。 
        欢迎各位老师和同学参加!

上一条:北京师范大学王灯山教授网络学术报告

下一条:数学-统计-三类高质量论文期刊(会议)目录

河南理工大学 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 ? 2023 数学与信息科学学院 校ICP备03110号