报告题目:Some tight bounds on the forcing numbers of perfect matchings of graphs
报 告 人:张和平
工作单位:兰州大学数学与统计学院
报告时间:2021-11-27 8:00-10:00
腾讯会议ID:4170675239
报告摘要:
For a simple graph G with 2n vertices and a perfect matching, let f(G) and F(G) the minimum and maximum forcing number of perfect matchings of G respectively. Then 0≤f(G)≤F(G)≤n-1.Hetyei obtained that the graphs G with a unique perfect matching have the maximal number of edges n2. It is known that G has a unique perfect matching if and only if f(G)=0. Along this line, we generalizedsuch classical result to all graphs G with f(G)=k for any given integer 0≤k≤n-1and obtainedthe maximal number of edges and characterized the extremal graphs as well. Conversely, we gave a non-trivial lower bound on f(G) in terms of the order and size. Che and Chen (2011) proposed an open problem: how to characterize the graphs G with f(G)=n-1. They showed that for bipartite graphs G, f(G)=n-1 if and only if G is complete bipartite graph Kn,n. We solved the problem for general graphs and obtained that f(G)=n-1 if and only if G is a complete multipartite graph or K+n,n. Further, we characterized all bipartite graphs G with f(G)= n-2.
报告人简介:
张和平,兰州大学教授,博士生导师,主要从事图的匹配理论、化学图论和计算机网络的研究,发表了一百余篇SCI收录学术论文,承担国家自然科学基金5项。2001年获教育部“第三届高校青年教师奖”,2002年获国务院颁发的政府特殊津贴,2002入选甘肃省“555创新人才工程”第一层次人选,2009年入选甘肃省领军人才(第二层次),2014年6月当选国际数学化学科学院院士。曾任甘肃省数学会理事长,兰州大学数学与统计学院院长,中国数学会常务理事。现任兰州大学学术委员会委员,中国组合数学与图论学会常务理事,中国运筹学会组合数学与图论学会副理事长,任美国《数学评论》和德国《数学文摘》评论员。曾在香港浸会大学,法国巴黎南大学,澳大利亚Newcastle大学,美国中田纳西州立大学,台湾中研院数学所等学术访问。