题目: Analysis on the Orr-Sommerfeld Equations for MHD
报 告 人:杨彤 教授
工作单位:香港城市大学
报告时间:2022-1-4(周二) 9:30-11:30 2022-1-6(周五) 9:30-11:30
腾讯会议ID:373 523 7756
报告摘要:It is a classical problem in fluid dynamics about the stability and instability of hydrodynamic patterns in various physical settings, in particular the inviscid limit of laminar flow and boundary layer. The study can be traced back to the early work by Lord Rayleigh and Heisenberg among many others. On the other hand, one of the powerful analytic tools introduced by Sommerfeld and Orr is the spectral analysis by studying the Fourier normal mode behavior through the famous Orr-Sommerfeld equation derived from the linearization of the incompressible Navier-Stokes equations. In this talk, we will present some recent study on the Orr-Sommerfeld system derived from the linearization of the MHD system around a shear flow profile in different physical regimes and then investigate some different or similar stability and instability phenomena compared with the Navier-Stokes equations. The study also reveals the effect of the magnetic field on stability in different situations.
报告人简介:杨彤,香港城市大学讲席教授,欧洲科学院院士(2018),发展中国家科学院院士(2021),香港科学院院士(2021), 美国数学会会士(2021) 。曾获华人数学家大会晨星银奖(1998), 国家杰出青年基金海外与港澳青年学者合作基金(2004), 教育部长江学者奖励计划讲座教授(2005), 裘槎基金会高级研究成就奖(2011), 国家自然科学奖二等奖(2012), 香港研资局高级研究学者奖(2020)。主要从事非线性偏微分方程的研究。在Journal of the American Mathematical Society,Communications on Pure and Applied Mathematics 等期刊上发表论文190多篇。是数学期刊«Analysis and Applications»的主编之一(2013-2017)及 «Kinetic and Related Models»的创刊主编之一,目前担任«Bulletin of the London Mathematical Society» «Journal of the London Mathematical Society» «SIAM Journal of Mathematical Analysis»等学术期刊的编委。