报告题目:Some results on flows with lower regularity and problems in composition of function spaces
报 告 人:蒋仁进
工作单位:天津大学数学学院
报告时间:2022-9-26 17:00-19:00;
腾讯会议ID:993511434
报告摘要:
In this talk, I shall report some results on quasi-conforml/ quasi-symmetric flows. I will first present Reimann’s result on flows of quasi-conformal mapping on $R^n$, $n\ge 2$, and its application to transport equation in BMO. Then I will report a joint work with K.W. Li and J. Xiao, where we complete the case of the real line. More precisely, we prove that if a map b: R\to R, has derivate in BMO, then it generates a flow with A_\infty density. We also show the sharpness of the result and apply it to the transport problem in BMO. We shall also present some open problems related to this question.
报告人简介:
蒋仁进,天津大学应用数学中心教授,博士生导师。蒋仁进教授于2012年毕业于芬兰Jyvaskyla大学,2014年-2015年获得欧盟居里学者奖学金, 主要研究领域为:调和分析及其在度量几何和偏微分方程中的应用。在调和分析及度量几何研究中,给出了调和函数的Yau梯度估计、热核的Li-Yau不等式及Riesz变换有界性的特征刻画,并建立了这些性质与周不等式的内蕴关联。这些成果给出了Strichartz、Hassell、Auscher等提出的几个公开问题的(新)解答, 并被Ambrosio等十余位ICM报告人在内的著名数学家在包括ICM一小时大会报告、Invention Math.论文等中引用.相关成果发表于Comm. Pure Appl. Math.、Adv. Math.、J. Math. Pures. Appl.、Math. Ann.、JFA、CVPDE等期刊。曾获天津市科技创新人才中青年领军人才, 以及国家"优秀青年科学基金"资助。