报告题目:Variable step-size BDF3 method for Allen-Cahn equation
报 告 人:陈明华
报告时间:2022-11-03 10:00-12:00
腾讯会议ID: 521-316-311
报告摘要:
In this talk, we analyze the three-step backward differentiation formula (BDF3) method for solving the Allen-Cahn equation on variable grids. For BDF2 method, the discrete orthogonal convolution (DOC) kernels are positive, the stability and convergence analysis are well established. However, the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial, since the DOC kernels are not always positive. By developing a novel spectral norm inequality, the unconditional stability and convergence are rigorously proved under the updated step ratio restriction 1.405 for BDF3 method. Finally, numerical experiments are performed to illustrate the theoretical results.
报告人简介:
陈明华,男, 福建省福安市人。2016年兰州大学引进副教授,硕士生导师。2021年获“教育部自然科学二等奖”(排名第三)、2017年获“中国数学会计算数学分会优秀青年论文二等奖”。以第一作者在IMA J. Numer. Anal.、SIAM J. Numer. Anal.、SIAM J. SCi. Comput.、SIAM J. Matrix Anal. Appl.等刊物发表SCI论文20余篇。