报告题目: Diffusion limit of the compressible Euler-P1 approximation model arising from radiation hydrodynamics
报 告 人: 琚强昌 研究员
工作单位: 北京应用物理与计算数学研究所
报告时间: 2022-11-14(周一) 14:30-17:30
腾讯会议ID: 794 364 7383
报告摘要:
We first show the nonequilibrium-diffusion limit of the compressible Euler-P1 approximation model arising in radiation hydrodynamics as the Mach number tends to zero when the initial data is well-prepared. In particular, the effect of the large temperature variation upon the limit is taken into account. The model leads to a singular problem which fails to fall into the category of the classical theory of singular limits for quasilinear hyperbolic equations. By introducing an appropriate normed space of solutions and exploiting the structure of the system, we establish the uniform local existence of smooth solutions and the convergence of the model to the incompressible nonhomogeneous Euler system coupled with a diffusion equation. Moreover, we also prove the nonequilibrium-diffusion limit of the compressible Euler-P1 approximation model when the Mach number is fixed.
报告人简介:
琚强昌,北京应用物理与计算数学研究所研究员,博士生导师。河南师范大学获学士和硕士学位,2003年获中科院数学所博士学位,师从肖玲研究员。2003-2005年在德国和意大利从事博士后研究。研究域为:可压缩流体力学方程的数学理论。部分研究工作发表在Advances in Mathematics., Archive for Rational Mechanics and Analysis和Communications in Mathematical Physics等国际权威学术期刊上,目前主持国家自然科学基金面上项目和重点项目。