报告题目:Recent progress on bilinear H\"ormander multipliers
报 告 人:贺丹青
工作单位:复旦大学数学科学学院
报告时间:2022-11-25 10:30-12:30;
腾讯会议ID:509-723-588
报告摘要:
The study of multilinear multipliers goes back to the work of Coifman and Meyer in 1970s, who extended Mihlin's result to the bilinear setting. Their result is known as the Coifman-Meyer theorem, which turned to be useful in harmonic analysis and PDE. Tomita and Grafakos-Si initiated the study of multilinear H\"ormander multipliers, a natural generalization of Coifman-Meyer multipliers, which became an important topic in multilinear harmonic analysis in last decade. In this talk, we will survey the development of bilinear H\"ormander multipliers, and discuss a sharp bi-parameter generalization. This is joint work with Chen, Lu, Park, and Zhang.
报告人简介:
贺丹青:复旦大学副教授。毕业于密苏里大学,师从世界著名调和分析专家L. Grafakos教授。主要研究调和分析中的双线性算子以及相关问题。主要已完成的工作包括弱Hardy空间的平方函数刻画、双线性粗糙核奇异积分算子的有界性、双线性Hörmander乘子的有界性等问题,已在Adv. in Math., Math. Ann. Math. Z.等国际著名期刊发表SCI论文十余篇。