报告题目:On a supersonic-sonic patch arising from the two-dimensional Riemann problem of the compressible Euler equations
报 告 人:胡燕波
工作单位:杭州师范大学
报告时间:2023-03-20 9:00-12:00
腾讯会议ID:688-224-6427
报告摘要:
In this talk, I will present a recent result on the study of the two-dimensional four-constant Riemann problem to the isentropic compressible Euler equations. A supersonic-sonic patch along a pseudo-streamline from the supersonic part to a sonic point is constructed in terms of the self-similar variables. This kind of patch appears frequently in the two-dimensional Riemann problem and is a building block for constructing a global solution. The problem is first solved by using the characteristic decomposition technique in a partial hodograph plane. Then we convert the solution from the partial hodograph variables to the self-similar variables to obtain the existence and uniform regularity of solutions to the original problem.
报告人简介:
胡燕波,杭州师范大学数学学院教授,2012年博士毕业于上海大学,主要研究方向为可压缩流体力学方程组的数学理论,对高维欧拉方程组的跨声速结构、非线性波方程的柯西等问题取得了一系列研究成果,在Arch. Ration. Mech. Anal.、 Math. Ann.、SIAM J. Math. Anal.、J. Differential Equations等国际主流数学杂志发表论文50余篇,主持国家级项目(面上和青年)2项、省部级项目4项,获浙江省自然科学三等奖和浙江省数学会科研成果二等奖各1项,入选浙江省高校中青年学科带头人、杭州市131人才等。