赵小奎,男,1987年生,河南理工大学讲师,硕士生导师。厦门大学与美国俄克拉荷马州立大学联合培养博士,美国《数学评论》(Mathematical Reviews)评论员,主要研究方向为流体力学偏微分方程。
联系方式:xkzhao@hpu.edu.cn
教学情况:
本科生:《偏微分方程》《高等数学》《线性代数》等。
研究生:《数理统计》等。
研究领域:
Navier-Stokes方程、磁流体力学偏微分方程及半导体偏微分方程等解的整体适定性、长时间行为及解的二维化等。
科研项目:
1.国家自然科学基金,12101200,磁流体力学的若干数学问题,2022/01—2024/12,30万,主持。
2.72批中国博士后面上项目,2022M721035,阻尼波型磁流体方程组解的极限行为,2022/12-至今,8万,主持。
代表论文:
1.Baoquan Yuan, Xiaokui Zhao, Blow-up Criteria for the 2D Full Compressible MHD system, Applicable Analysis, 2014, 93 (7): 1339-1357
2.Baoquan Yuan, Xiaokui Zhao, Blowup of Smooth Solutions to the Full Compressible MHD System with Compact Density, Kinetic and Related Models, 2014, 7 (1): 195-203
3.Baoquan Yuan, Xiaokui Zhao, Blow-up of smooth solution to the isentropic compressible Navier-Stokes-Poisson system with compact density, Acta Appl. Math., 2018,153:189-195.
4.Jianwen Zhang, Xiaokui Zhao, On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations, J. Math. Phys., 2017, 58: 031504.
5.Xiaokui Zhao*, Global wellposedness of magnetohydrodynamics for Boussinesq system with partial viscosity and zero magnetic diffusion, J. Math. Anal. Appl., 2018,461(1): 97-127.
6.Xin Si, Xiaokui Zhao*, An initial boundary value problem for screw pinches in plasma physics with temperature dependent viscosity coefficients, J. Math. Anal. Appl., 2018, 461(1): 273-303.
7.Shibin Su, Xiaokui Zhao*, Global wellposedness of magnetohydrodynamics system with temperature-dependent viscosity, Acta Math. Sci. Ser. B (Engl. Ed.), 2018, 38(3): 898–914.
8.Xin Si, Xiaokui Zhao*, Large time behavior of strong solutions to the 1D non-resistive full compressible MHD system with large initial data, Z. Angew. Math. Phys., 2019, 70(1): Paper No. 21, 24 pp.
9.Ying Sun, Jianwen Zhang, Xiaokui Zhao*, Nonlinearly exponential stability for the compressible Navier-Stokes equations with temperature-dependent transport coefficients, J. Differential Equations, 2021, 286: 676-709.
10.Wanrong Yang, Xiaokui Zhao*, Global well-posedness and asymptotics of full compressible non-resistive magnetohydrodynamics system with large external potential forces, Math. Methods Appl. Sci., 2022, 45 (1): 206-237.