题目:On stochastic benthic-drift model with memory-based self-diffusion: Stochastic bifurcation and error estimates
时间:2024.07.18,10:00-12:30,
腾讯会议:893 655 374
摘要:In this paper, we proposed a stochastic benthic-drift model (SBDM) with memory-based self-diffusion by a modified Fick's Law. With the memory-based self-diffusion coefficient regarded as parameters, we prove the stochastic bifurcation of the reduced system derived by stochastic parameterizing manifolds near the critical point, which shows the impact of the noise and the averaged memory period on stochastic bifurcation of SBDM. More precisely, Pitchfork bifurcation is observed from the reduced system without memory-basec diffusion term, but Hopf bifurcation is observed from the reduced system with memory-based diffusion term. Finally, we derive rigorous error estimates between the reduced systems and those of the original SBDM emanating by numerical analysis.
黄在堂,博士后,南宁师范大学数学与统计学院院长,教授,博士生导师。主要从事随机动力系统研究,在对随机微分动力系统的几何理论、分支问题、混沌、大偏差原理、拟平稳分布、拟遍历性等基础性问题进行研究,取得了系列重要的进展。主持国家自然科学基金3项和广西自然科学基金6项。在国内外学术刊物发表论文60多篇,其中,SCI检索30篇。2017年,“共建数学建模活动平台 教学科研竞赛紧密对接 提升学生数学应用创新能力”荣获“广西高等教育自治区级教学成果奖一等奖”和2012年,荣获“广东省优秀博士学位论文”。2017 年入选“广西高等学校千名中青年骨干教师培育计划”。2021年荣获“自治区党委教育工委优秀党员称号,2022年, “专题微课”贯通课内外:初中数学“供给式”混合教学探索与实践”荣获“南宁市基础教育教学成果奖一等奖”。2018-2019年访问清华大学周培源应用数学研究中心。