报告题目: Recent progress on dispersive estimates of higher order Schrodinger operator
报 告 人:尧小华
工作单位:华中师范大学数学与统计学院
报告时间:2024-10-29 9:00-11:00;
报告地点:数信学院305
报告摘要:
The dispersive estimates of Schr\”odinger operators are interesting topics, which play fundamental roles in the wellposedness of nonlinear dispersive equations and the stability of solitary waves. In this talk, I will recall some classical works on Kato smoothing, Strichartz estimates and point-wise decay of Schr\”odinger operators with the bounded decay potentials, and then address recent progress on higher order Schr\”odinger operators. The main techniques based on the detailed analysis of resolvent and spectral measure, where the classifications of zero resonances and zero asymptotic expansions of resolvent are the most important parts.
报告人简介:
尧小华,华中师范大学教授,博士生导师。研究方向为调和分析与偏微分算子,研究兴趣主要集中在调和分析与偏微分方程的交叉领域,并主持和承担过包括国家自然科学面上基金、新世纪优秀人才计划项目在内的多项科研项目。自2001年以来,在Comm. Math. Phys.、J. Funct. Anal、J. Differential Equations、Comm. Partial Differential Equations等期刊发表一系列重要研究成果。