报告题目:Some harmonic analysis results for two types of conical singular Schrodinger operators and their applications
报 告 人:张军勇 教授 北京理工大学
报告时间:2025-7-2(周三) 9:00-12:00
报告人简介:张军勇,北京理工大学数学与统计学院教授,博士生导师。入选欧盟玛丽居里学者计划,国家级青年人才计划。曾在澳大利亚国立大学博士后研究和美国斯坦福大学访问学者。主要从事调和分析和偏微分方程的研究工作,先后主持国家自然科学基金青年项目、面上项目。在Adv. Math.、Math. Ann.、Trans. Amer. Math. Soc.、Int. Math. Res. Not. IMRN、Math. Z.、Comm. Partial Differential Equations、Anal. PDE、J. Funct. Anal. 等期刊发表论文50余篇。
报告摘要:In this talk, I will discuss various results in harmonic analysis, including dispersive estimates, Strichartz estimates, and resolvent estimates, specifically for Schrödinger operators on metric cones and scaling-critical electromagnetic Schrödinger operators. These are based on collaborative work with L. Fanelli (Bilbao), Q. Jia (ANU), C. Miao (IAPCM), H. Mizutani (Osaka), L. Yan (Sun Yat-sen University), J. Zheng (IAPCM), and my students from BIT.