学校主页
正文 | Quick Navigation
通知公告
当前位置: 网站首页 >> 正文

北京师范大学数学科学学院曹外香副教授学术报告

发布人:    发布时间:2022-10-16    【打印此页】


报告题目: A class of efficient Hamiltonian conservative spectral methods for Korteweg-de Vries  equation

报 告 人:曹外香

工作单位:北京师范大学

报告时间:2022-10-18  8:30-10:30

腾讯会议ID: 989219874

报告摘要:In this talk, we present and introduce  two  efficient  Hamiltonian conservative fully discrete numerical schemes for Korteweg-de Vries equations. The new numerical schemes are constructed by using time-stepping spectral Petrov-Galerkin (SPG) or Gauss collocation (SGC) methods  for the temporal discretization coupled with the $p$-version/spectral local discontinuous Galerkin  (LDG) methods for the space discretization. We prove that the  fully discrete SPG-LDG scheme  preserves  both the  momentum and   the Hamilton energy exactly for generalized KdV equations. While the fully discrete SGC-LDG  formulation preserves  the  momentum and  the Hamilton energy exactly for  linearized KdV equations.  As for nonlinear  KdV equations, the SGC-LDG scheme preserves   the momentum exactly and is Hamiltonian conserving up to some spectral accuracy.  Furthermore, we show that the semi-discrete $p$-version LDG methods  converge  exponentially with respect to the polynomial degree. The numerical experiments are provided to demonstrate  that the proposed numerical methods preserve the momentum, $L^2$ energy and  Hamilton energy and maintain the shape of the solution phase efficiently  over  long time period.

报告人简介:

曹外香,北京师范大学数学科学学院副教授,研究方向为偏微分方程数值解法和数值分析,主要研究有限元方法、有限体积方法,间断有限元方法高效高精度数值计算。主要结果发表在SIAM J. Numer. Anal., Math. Comp.,  J. Sci. Comput. 等期刊上。曾获中国博士后基金一等资助和特别资助,广东省自然科学二等奖,主持国家自然科学基金面上项目、国家自然科学基金青年基金等项目。


上一条:中南大学陈和柏教授学术报告

下一条:南京邮电大学王海金副教授学术报告

河南理工大学 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 ? 2023 数学与信息科学学院 校ICP备03110号